Class BrickIMU


  • public class BrickIMU
    extends Device
    Full fledged AHRS with 9 degrees of freedom
    • Field Detail

      • DEVICE_DISPLAY_NAME

        public static final java.lang.String DEVICE_DISPLAY_NAME
        See Also:
        Constant Field Values
      • FUNCTION_GET_ACCELERATION

        public static final byte FUNCTION_GET_ACCELERATION
        See Also:
        Constant Field Values
      • FUNCTION_GET_MAGNETIC_FIELD

        public static final byte FUNCTION_GET_MAGNETIC_FIELD
        See Also:
        Constant Field Values
      • FUNCTION_GET_ANGULAR_VELOCITY

        public static final byte FUNCTION_GET_ANGULAR_VELOCITY
        See Also:
        Constant Field Values
      • FUNCTION_GET_ORIENTATION

        public static final byte FUNCTION_GET_ORIENTATION
        See Also:
        Constant Field Values
      • FUNCTION_GET_QUATERNION

        public static final byte FUNCTION_GET_QUATERNION
        See Also:
        Constant Field Values
      • FUNCTION_GET_IMU_TEMPERATURE

        public static final byte FUNCTION_GET_IMU_TEMPERATURE
        See Also:
        Constant Field Values
      • FUNCTION_SET_ACCELERATION_RANGE

        public static final byte FUNCTION_SET_ACCELERATION_RANGE
        See Also:
        Constant Field Values
      • FUNCTION_GET_ACCELERATION_RANGE

        public static final byte FUNCTION_GET_ACCELERATION_RANGE
        See Also:
        Constant Field Values
      • FUNCTION_SET_MAGNETOMETER_RANGE

        public static final byte FUNCTION_SET_MAGNETOMETER_RANGE
        See Also:
        Constant Field Values
      • FUNCTION_GET_MAGNETOMETER_RANGE

        public static final byte FUNCTION_GET_MAGNETOMETER_RANGE
        See Also:
        Constant Field Values
      • FUNCTION_SET_CONVERGENCE_SPEED

        public static final byte FUNCTION_SET_CONVERGENCE_SPEED
        See Also:
        Constant Field Values
      • FUNCTION_GET_CONVERGENCE_SPEED

        public static final byte FUNCTION_GET_CONVERGENCE_SPEED
        See Also:
        Constant Field Values
      • FUNCTION_SET_CALIBRATION

        public static final byte FUNCTION_SET_CALIBRATION
        See Also:
        Constant Field Values
      • FUNCTION_GET_CALIBRATION

        public static final byte FUNCTION_GET_CALIBRATION
        See Also:
        Constant Field Values
      • FUNCTION_SET_ACCELERATION_PERIOD

        public static final byte FUNCTION_SET_ACCELERATION_PERIOD
        See Also:
        Constant Field Values
      • FUNCTION_GET_ACCELERATION_PERIOD

        public static final byte FUNCTION_GET_ACCELERATION_PERIOD
        See Also:
        Constant Field Values
      • FUNCTION_SET_MAGNETIC_FIELD_PERIOD

        public static final byte FUNCTION_SET_MAGNETIC_FIELD_PERIOD
        See Also:
        Constant Field Values
      • FUNCTION_GET_MAGNETIC_FIELD_PERIOD

        public static final byte FUNCTION_GET_MAGNETIC_FIELD_PERIOD
        See Also:
        Constant Field Values
      • FUNCTION_SET_ANGULAR_VELOCITY_PERIOD

        public static final byte FUNCTION_SET_ANGULAR_VELOCITY_PERIOD
        See Also:
        Constant Field Values
      • FUNCTION_GET_ANGULAR_VELOCITY_PERIOD

        public static final byte FUNCTION_GET_ANGULAR_VELOCITY_PERIOD
        See Also:
        Constant Field Values
      • FUNCTION_SET_ALL_DATA_PERIOD

        public static final byte FUNCTION_SET_ALL_DATA_PERIOD
        See Also:
        Constant Field Values
      • FUNCTION_GET_ALL_DATA_PERIOD

        public static final byte FUNCTION_GET_ALL_DATA_PERIOD
        See Also:
        Constant Field Values
      • FUNCTION_SET_ORIENTATION_PERIOD

        public static final byte FUNCTION_SET_ORIENTATION_PERIOD
        See Also:
        Constant Field Values
      • FUNCTION_GET_ORIENTATION_PERIOD

        public static final byte FUNCTION_GET_ORIENTATION_PERIOD
        See Also:
        Constant Field Values
      • FUNCTION_SET_QUATERNION_PERIOD

        public static final byte FUNCTION_SET_QUATERNION_PERIOD
        See Also:
        Constant Field Values
      • FUNCTION_GET_QUATERNION_PERIOD

        public static final byte FUNCTION_GET_QUATERNION_PERIOD
        See Also:
        Constant Field Values
      • FUNCTION_ORIENTATION_CALCULATION_ON

        public static final byte FUNCTION_ORIENTATION_CALCULATION_ON
        See Also:
        Constant Field Values
      • FUNCTION_ORIENTATION_CALCULATION_OFF

        public static final byte FUNCTION_ORIENTATION_CALCULATION_OFF
        See Also:
        Constant Field Values
      • FUNCTION_IS_ORIENTATION_CALCULATION_ON

        public static final byte FUNCTION_IS_ORIENTATION_CALCULATION_ON
        See Also:
        Constant Field Values
      • FUNCTION_SET_SPITFP_BAUDRATE_CONFIG

        public static final byte FUNCTION_SET_SPITFP_BAUDRATE_CONFIG
        See Also:
        Constant Field Values
      • FUNCTION_GET_SPITFP_BAUDRATE_CONFIG

        public static final byte FUNCTION_GET_SPITFP_BAUDRATE_CONFIG
        See Also:
        Constant Field Values
      • FUNCTION_GET_SEND_TIMEOUT_COUNT

        public static final byte FUNCTION_GET_SEND_TIMEOUT_COUNT
        See Also:
        Constant Field Values
      • FUNCTION_SET_SPITFP_BAUDRATE

        public static final byte FUNCTION_SET_SPITFP_BAUDRATE
        See Also:
        Constant Field Values
      • FUNCTION_GET_SPITFP_BAUDRATE

        public static final byte FUNCTION_GET_SPITFP_BAUDRATE
        See Also:
        Constant Field Values
      • FUNCTION_GET_SPITFP_ERROR_COUNT

        public static final byte FUNCTION_GET_SPITFP_ERROR_COUNT
        See Also:
        Constant Field Values
      • FUNCTION_ENABLE_STATUS_LED

        public static final byte FUNCTION_ENABLE_STATUS_LED
        See Also:
        Constant Field Values
      • FUNCTION_DISABLE_STATUS_LED

        public static final byte FUNCTION_DISABLE_STATUS_LED
        See Also:
        Constant Field Values
      • FUNCTION_IS_STATUS_LED_ENABLED

        public static final byte FUNCTION_IS_STATUS_LED_ENABLED
        See Also:
        Constant Field Values
      • FUNCTION_GET_PROTOCOL1_BRICKLET_NAME

        public static final byte FUNCTION_GET_PROTOCOL1_BRICKLET_NAME
        See Also:
        Constant Field Values
      • FUNCTION_GET_CHIP_TEMPERATURE

        public static final byte FUNCTION_GET_CHIP_TEMPERATURE
        See Also:
        Constant Field Values
      • FUNCTION_WRITE_BRICKLET_PLUGIN

        public static final byte FUNCTION_WRITE_BRICKLET_PLUGIN
        See Also:
        Constant Field Values
      • FUNCTION_READ_BRICKLET_PLUGIN

        public static final byte FUNCTION_READ_BRICKLET_PLUGIN
        See Also:
        Constant Field Values
      • CALIBRATION_TYPE_ACCELEROMETER_GAIN

        public static final short CALIBRATION_TYPE_ACCELEROMETER_GAIN
        See Also:
        Constant Field Values
      • CALIBRATION_TYPE_ACCELEROMETER_BIAS

        public static final short CALIBRATION_TYPE_ACCELEROMETER_BIAS
        See Also:
        Constant Field Values
      • CALIBRATION_TYPE_MAGNETOMETER_GAIN

        public static final short CALIBRATION_TYPE_MAGNETOMETER_GAIN
        See Also:
        Constant Field Values
      • CALIBRATION_TYPE_MAGNETOMETER_BIAS

        public static final short CALIBRATION_TYPE_MAGNETOMETER_BIAS
        See Also:
        Constant Field Values
      • CALIBRATION_TYPE_GYROSCOPE_GAIN

        public static final short CALIBRATION_TYPE_GYROSCOPE_GAIN
        See Also:
        Constant Field Values
      • CALIBRATION_TYPE_GYROSCOPE_BIAS

        public static final short CALIBRATION_TYPE_GYROSCOPE_BIAS
        See Also:
        Constant Field Values
      • COMMUNICATION_METHOD_NONE

        public static final short COMMUNICATION_METHOD_NONE
        See Also:
        Constant Field Values
      • COMMUNICATION_METHOD_USB

        public static final short COMMUNICATION_METHOD_USB
        See Also:
        Constant Field Values
      • COMMUNICATION_METHOD_SPI_STACK

        public static final short COMMUNICATION_METHOD_SPI_STACK
        See Also:
        Constant Field Values
      • COMMUNICATION_METHOD_CHIBI

        public static final short COMMUNICATION_METHOD_CHIBI
        See Also:
        Constant Field Values
      • COMMUNICATION_METHOD_RS485

        public static final short COMMUNICATION_METHOD_RS485
        See Also:
        Constant Field Values
      • COMMUNICATION_METHOD_WIFI

        public static final short COMMUNICATION_METHOD_WIFI
        See Also:
        Constant Field Values
      • COMMUNICATION_METHOD_ETHERNET

        public static final short COMMUNICATION_METHOD_ETHERNET
        See Also:
        Constant Field Values
      • COMMUNICATION_METHOD_WIFI_V2

        public static final short COMMUNICATION_METHOD_WIFI_V2
        See Also:
        Constant Field Values
    • Constructor Detail

      • BrickIMU

        public BrickIMU​(java.lang.String uid,
                        IPConnection ipcon)
        Creates an object with the unique device ID \c uid. and adds it to the IP Connection \c ipcon.
    • Method Detail

      • getOrientation

        public BrickIMU.Orientation getOrientation()
                                            throws TinkerforgeException
        Returns the current orientation (roll, pitch, yaw) of the IMU Brick as Euler angles. Note that Euler angles always experience a `gimbal lock <https://en.wikipedia.org/wiki/Gimbal_lock>`__. We recommend that you use quaternions instead. The order to sequence in which the orientation values should be applied is roll, yaw, pitch. If you want to get the orientation periodically, it is recommended to use the BrickIMU.OrientationListener listener and set the period with setOrientationPeriod(long).
        Throws:
        TinkerforgeException
      • getQuaternion

        public BrickIMU.Quaternion getQuaternion()
                                          throws TinkerforgeException
        Returns the current orientation (x, y, z, w) of the IMU as `quaternions <https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation>`__. You can go from quaternions to Euler angles with the following formula:: xAngle = atan2(2*y*w - 2*x*z, 1 - 2*y*y - 2*z*z) yAngle = atan2(2*x*w - 2*y*z, 1 - 2*x*x - 2*z*z) zAngle = asin(2*x*y + 2*z*w) This process is not reversible, because of the `gimbal lock <https://en.wikipedia.org/wiki/Gimbal_lock>`__. It is also possible to calculate independent angles. You can calculate yaw, pitch and roll in a right-handed vehicle coordinate system according to DIN70000 with:: yaw = atan2(2*x*y + 2*w*z, w*w + x*x - y*y - z*z) pitch = -asin(2*w*y - 2*x*z) roll = -atan2(2*y*z + 2*w*x, -w*w + x*x + y*y - z*z)) Converting the quaternions to an OpenGL transformation matrix is possible with the following formula:: matrix = [[1 - 2*(y*y + z*z), 2*(x*y - w*z), 2*(x*z + w*y), 0], [ 2*(x*y + w*z), 1 - 2*(x*x + z*z), 2*(y*z - w*x), 0], [ 2*(x*z - w*y), 2*(y*z + w*x), 1 - 2*(x*x + y*y), 0], [ 0, 0, 0, 1]] If you want to get the quaternions periodically, it is recommended to use the BrickIMU.QuaternionListener listener and set the period with setQuaternionPeriod(long).
        Throws:
        TinkerforgeException
      • setConvergenceSpeed

        public void setConvergenceSpeed​(int speed)
                                 throws TinkerforgeException
        Sets the convergence speed of the IMU Brick. The convergence speed determines how the different sensor measurements are fused. If the orientation of the IMU Brick is off by 10° and the convergence speed is set to 20°/s, it will take 0.5s until the orientation is corrected. However, if the correct orientation is reached and the convergence speed is too high, the orientation will fluctuate with the fluctuations of the accelerometer and the magnetometer. If you set the convergence speed to 0, practically only the gyroscope is used to calculate the orientation. This gives very smooth movements, but errors of the gyroscope will not be corrected. If you set the convergence speed to something above 500, practically only the magnetometer and the accelerometer are used to calculate the orientation. In this case the movements are abrupt and the values will fluctuate, but there won't be any errors that accumulate over time. In an application with high angular velocities, we recommend a high convergence speed, so the errors of the gyroscope can be corrected fast. In applications with only slow movements we recommend a low convergence speed. You can change the convergence speed on the fly. So it is possible (and recommended) to increase the convergence speed before an abrupt movement and decrease it afterwards again. You might want to play around with the convergence speed in the Brick Viewer to get a feeling for a good value for your application.
        Throws:
        TinkerforgeException
      • setCalibration

        public void setCalibration​(short typ,
                                   short[] data)
                            throws TinkerforgeException
        There are several different types that can be calibrated: \verbatim "Type", "Description", "Values" "0", "Accelerometer Gain", "``[mul x, mul y, mul z, div x, div y, div z, 0, 0, 0, 0]``" "1", "Accelerometer Bias", "``[bias x, bias y, bias z, 0, 0, 0, 0, 0, 0, 0]``" "2", "Magnetometer Gain", "``[mul x, mul y, mul z, div x, div y, div z, 0, 0, 0, 0]``" "3", "Magnetometer Bias", "``[bias x, bias y, bias z, 0, 0, 0, 0, 0, 0, 0]``" "4", "Gyroscope Gain", "``[mul x, mul y, mul z, div x, div y, div z, 0, 0, 0, 0]``" "5", "Gyroscope Bias", "``[bias xl, bias yl, bias zl, temp l, bias xh, bias yh, bias zh, temp h, 0, 0]``" \endverbatim The calibration via gain and bias is done with the following formula:: new_value = (bias + orig_value) * gain_mul / gain_div If you really want to write your own calibration software, please keep in mind that you first have to undo the old calibration (set bias to 0 and gain to 1/1) and that you have to average over several thousand values to obtain a usable result in the end. The gyroscope bias is highly dependent on the temperature, so you have to calibrate the bias two times with different temperatures. The values ``xl``, ``yl``, ``zl`` and ``temp l`` are the bias for ``x``, ``y``, ``z`` and the corresponding temperature for a low temperature. The values ``xh``, ``yh``, ``zh`` and ``temp h`` are the same for a high temperatures. The temperature difference should be at least 5°C. If you have a temperature where the IMU Brick is mostly used, you should use this temperature for one of the sampling points. \note We highly recommend that you use the Brick Viewer to calibrate your IMU Brick.
        Throws:
        TinkerforgeException
      • orientationCalculationOn

        public void orientationCalculationOn()
                                      throws TinkerforgeException
        Turns the orientation calculation of the IMU Brick on. As default the calculation is on. .. versionadded:: 2.0.2$nbsp;(Firmware)
        Throws:
        TinkerforgeException
      • orientationCalculationOff

        public void orientationCalculationOff()
                                       throws TinkerforgeException
        Turns the orientation calculation of the IMU Brick off. If the calculation is off, getOrientation() will return the last calculated value until the calculation is turned on again. The trigonometric functions that are needed to calculate the orientation are very expensive. We recommend to turn the orientation calculation off if the orientation is not needed, to free calculation time for the sensor fusion algorithm. As default the calculation is on. .. versionadded:: 2.0.2$nbsp;(Firmware)
        Throws:
        TinkerforgeException
      • isOrientationCalculationOn

        public boolean isOrientationCalculationOn()
                                           throws TinkerforgeException
        Returns *true* if the orientation calculation of the IMU Brick is on, *false* otherwise. .. versionadded:: 2.0.2$nbsp;(Firmware)
        Throws:
        TinkerforgeException
      • setSPITFPBaudrateConfig

        public void setSPITFPBaudrateConfig​(boolean enableDynamicBaudrate,
                                            long minimumDynamicBaudrate)
                                     throws TinkerforgeException
        The SPITF protocol can be used with a dynamic baudrate. If the dynamic baudrate is enabled, the Brick will try to adapt the baudrate for the communication between Bricks and Bricklets according to the amount of data that is transferred. The baudrate will be increased exponentially if lots of data is sent/received and decreased linearly if little data is sent/received. This lowers the baudrate in applications where little data is transferred (e.g. a weather station) and increases the robustness. If there is lots of data to transfer (e.g. Thermal Imaging Bricklet) it automatically increases the baudrate as needed. In cases where some data has to transferred as fast as possible every few seconds (e.g. RS485 Bricklet with a high baudrate but small payload) you may want to turn the dynamic baudrate off to get the highest possible performance. The maximum value of the baudrate can be set per port with the function setSPITFPBaudrate(char, long). If the dynamic baudrate is disabled, the baudrate as set by setSPITFPBaudrate(char, long) will be used statically. .. versionadded:: 2.3.5$nbsp;(Firmware)
        Throws:
        TinkerforgeException
      • getSendTimeoutCount

        public long getSendTimeoutCount​(short communicationMethod)
                                 throws TinkerforgeException
        Returns the timeout count for the different communication methods. The methods 0-2 are available for all Bricks, 3-7 only for Master Bricks. This function is mostly used for debugging during development, in normal operation the counters should nearly always stay at 0. .. versionadded:: 2.3.3$nbsp;(Firmware)
        Throws:
        TinkerforgeException
      • setSPITFPBaudrate

        public void setSPITFPBaudrate​(char brickletPort,
                                      long baudrate)
                               throws TinkerforgeException
        Sets the baudrate for a specific Bricklet port. If you want to increase the throughput of Bricklets you can increase the baudrate. If you get a high error count because of high interference (see getSPITFPErrorCount(char)) you can decrease the baudrate. If the dynamic baudrate feature is enabled, the baudrate set by this function corresponds to the maximum baudrate (see setSPITFPBaudrateConfig(boolean, long)). Regulatory testing is done with the default baudrate. If CE compatibility or similar is necessary in your applications we recommend to not change the baudrate. .. versionadded:: 2.3.3$nbsp;(Firmware)
        Throws:
        TinkerforgeException
      • getSPITFPErrorCount

        public BrickIMU.SPITFPErrorCount getSPITFPErrorCount​(char brickletPort)
                                                      throws TinkerforgeException
        Returns the error count for the communication between Brick and Bricklet. The errors are divided into * ACK checksum errors, * message checksum errors, * framing errors and * overflow errors. The errors counts are for errors that occur on the Brick side. All Bricklets have a similar function that returns the errors on the Bricklet side. .. versionadded:: 2.3.3$nbsp;(Firmware)
        Throws:
        TinkerforgeException
      • enableStatusLED

        public void enableStatusLED()
                             throws TinkerforgeException
        Enables the status LED. The status LED is the blue LED next to the USB connector. If enabled is is on and it flickers if data is transfered. If disabled it is always off. The default state is enabled. .. versionadded:: 2.3.1$nbsp;(Firmware)
        Throws:
        TinkerforgeException
      • disableStatusLED

        public void disableStatusLED()
                              throws TinkerforgeException
        Disables the status LED. The status LED is the blue LED next to the USB connector. If enabled is is on and it flickers if data is transfered. If disabled it is always off. The default state is enabled. .. versionadded:: 2.3.1$nbsp;(Firmware)
        Throws:
        TinkerforgeException
      • isStatusLEDEnabled

        public boolean isStatusLEDEnabled()
                                   throws TinkerforgeException
        Returns *true* if the status LED is enabled, *false* otherwise. .. versionadded:: 2.3.1$nbsp;(Firmware)
        Throws:
        TinkerforgeException
      • getChipTemperature

        public short getChipTemperature()
                                 throws TinkerforgeException
        Returns the temperature as measured inside the microcontroller. The value returned is not the ambient temperature! The temperature is only proportional to the real temperature and it has an accuracy of ±15%. Practically it is only useful as an indicator for temperature changes.
        Throws:
        TinkerforgeException
      • reset

        public void reset()
                   throws TinkerforgeException
        Calling this function will reset the Brick. Calling this function on a Brick inside of a stack will reset the whole stack. After a reset you have to create new device objects, calling functions on the existing ones will result in undefined behavior!
        Throws:
        TinkerforgeException
      • writeBrickletPlugin

        public void writeBrickletPlugin​(char port,
                                        short offset,
                                        short[] chunk)
                                 throws TinkerforgeException
        Writes 32 bytes of firmware to the bricklet attached at the given port. The bytes are written to the position offset * 32. This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.
        Throws:
        TinkerforgeException
      • readBrickletPlugin

        public short[] readBrickletPlugin​(char port,
                                          short offset)
                                   throws TinkerforgeException
        Reads 32 bytes of firmware from the bricklet attached at the given port. The bytes are read starting at the position offset * 32. This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.
        Throws:
        TinkerforgeException
      • getIdentity

        public Device.Identity getIdentity()
                                    throws TinkerforgeException
        Returns the UID, the UID where the Brick is connected to, the position, the hardware and firmware version as well as the device identifier. The position is the position in the stack from '0' (bottom) to '8' (top). The device identifier numbers can be found :ref:`here <device_identifier>`. |device_identifier_constant|
        Specified by:
        getIdentity in class Device
        Throws:
        TinkerforgeException
      • removeAccelerationListener

        public void removeAccelerationListener​(BrickIMU.AccelerationListener listener)
        Removes a Acceleration listener.
      • removeMagneticFieldListener

        public void removeMagneticFieldListener​(BrickIMU.MagneticFieldListener listener)
        Removes a MagneticField listener.
      • removeAllDataListener

        public void removeAllDataListener​(BrickIMU.AllDataListener listener)
        Removes a AllData listener.
      • removeOrientationListener

        public void removeOrientationListener​(BrickIMU.OrientationListener listener)
        Removes a Orientation listener.
      • removeQuaternionListener

        public void removeQuaternionListener​(BrickIMU.QuaternionListener listener)
        Removes a Quaternion listener.