Note
This Bricklet is currently in the prototype stage and the software/hardware as well as the documentation is in an incomplete state.
This is the description of the Delphi/Lazarus API bindings for the Industrial Dual Analog In Bricklet. General information and technical specifications for the Industrial Dual Analog In Bricklet are summarized in its hardware description.
An installation guide for the Delphi/Lazarus API bindings is part of their general description.
The example code below is Public Domain (CC0 1.0).
Since Delphi does not support multiple return values directly, we use the out keyword to return multiple values from a function.
All functions and procedures listed below are thread-safe.
The Bricklet has two input channel. Functions that are related directly to a channel have a channel parameter to specify one of the two channels. Valid values for the channel parameter are 0 and 1.
Creates an object with the unique device ID uid:
industrialDualAnalogIn := TBrickletIndustrialDualAnalogIn.Create('YOUR_DEVICE_UID', ipcon);
This object can then be used after the IP Connection is connected (see examples above).
Returns the voltage for the given channel in mV.
If you want to get the voltage periodically, it is recommended to use the callback OnVoltage and set the period with SetVoltageCallbackPeriod.
Sets the sample rate. The sample rate can be between 1 sample per second and 976 samples per second. Decreasing the sample rate will also decrease the noise on the data.
The following constants are available for this function:
Returns the sample rate as set by SetSampleRate.
The following constants are available for this function:
Sets offset and gain of MCP3911 internal calibration registers.
See MCP3911 datasheet 7.7 and 7.8. The Industrial Dual Analog In Bricklet is already factory calibrated by Tinkerforge. It should not be necessary for you to use this function
Returns the calibration as set by SetCalibration.
Returns the ADC values as given by the MCP3911 IC. This function is needed for proper calibration, see SetCalibration.
Returns the version of the API definition (major, minor, revision) implemented by this API bindings. This is neither the release version of this API bindings nor does it tell you anything about the represented Brick or Bricklet.
Returns the response expected flag for the function specified by the function ID parameter. It is true if the function is expected to send a response, false otherwise.
For getter functions this is enabled by default and cannot be disabled, because those functions will always send a response. For callback configuration functions it is enabled by default too, but can be disabled by SetResponseExpected. For setter functions it is disabled by default and can be enabled.
Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is send and errors are silently ignored, because they cannot be detected.
See SetResponseExpected for the list of function ID constants available for this function.
Changes the response expected flag of the function specified by the function ID parameter. This flag can only be changed for setter (default value: false) and callback configuration functions (default value: true). For getter functions it is always enabled and callbacks it is always disabled.
Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is send and errors are silently ignored, because they cannot be detected.
The following function ID constants are available for this function:
Changes the response expected flag for all setter and callback configuration functions of this device at once.
Returns the UID, the UID where the Bricklet is connected to, the position, the hardware and firmware version as well as the device identifier.
The position can be 'a', 'b', 'c' or 'd'.
The device identifier numbers can be found here. There is also a constant for the device identifier of this Bricklet.
Sets the period in ms with which the OnVoltage callback is triggered periodically for the given channel. A value of 0 turns the callback off.
OnVoltage is only triggered if the voltage has changed since the last triggering.
The default value is 0.
Returns the period as set by SetVoltageCallbackPeriod.
Sets the thresholds for the OnVoltageReached callback for the given channel.
The following options are possible:
Option | Description |
---|---|
'x' | Callback is turned off |
'o' | Callback is triggered when the voltage is outside the min and max values |
'i' | Callback is triggered when the voltage is inside the min and max values |
'<' | Callback is triggered when the voltage is smaller than the min value (max is ignored) |
'>' | Callback is triggered when the voltage is greater than the min value (max is ignored) |
The default value is ('x', 0, 0).
The following constants are available for this function:
Returns the threshold as set by SetVoltageCallbackThreshold.
The following constants are available for this function:
Sets the period in ms with which the threshold callback
is triggered, if the threshold
keeps being reached.
The default value is 100.
Returns the debounce period as set by SetDebouncePeriod.
Callbacks can be registered to receive time critical or recurring data from the device. The registration is done by assigning a procedure to an callback property of the device object:
procedure TExample.MyCallback(sender: TBrickletIndustrialDualAnalogIn; const param: word); begin WriteLn(param); end; industrialDualAnalogIn.OnExample := {$ifdef FPC}@{$endif}example.MyCallback;
The available callback property and their type of parameters are described below.
Note
Using callbacks for recurring events is always preferred compared to using getters. It will use less USB bandwidth and the latency will be a lot better, since there is no round trip time.
procedure(sender: TBrickletIndustrialDualAnalogIn; const channel: byte; const voltage: longint) of object;
This callback is triggered periodically with the period that is set by SetVoltageCallbackPeriod. The parameter is the voltage of the channel.
OnVoltage is only triggered if the voltage has changed since the last triggering.
procedure(sender: TBrickletIndustrialDualAnalogIn; const channel: byte; const voltage: longint) of object;
This callback is triggered when the threshold as set by SetVoltageCallbackThreshold is reached. The parameter is the voltage of the channel.
If the threshold keeps being reached, the callback is triggered periodically with the period as set by SetDebouncePeriod.
This constant is used to identify a Industrial Dual Analog In Bricklet.
The GetIdentity function and the OnEnumerate callback of the IP Connection have a deviceIdentifier parameter to specify the Brick's or Bricklet's type.